Skip to content

Incorporating Domain Knowledge into LLMs

Lately, I have been working with LLMs (who has not?). Obviously, LLMs are quite nice for a variety of tasks, especially those that are concerned with communication with humans. One then quickly arrives at a point where highly specific domain knowledge has to be incorporated into the communication process, since this knowledge is usually lacking from generalized text corpora that LLMs are usually trained on. In this article, we'll explore some methods to bridge that gap and make LLMs more knowledgeable in specific domains.

1. Pre-training with Domain-Specific Data

One way to incorporate domain knowledge into LLMs is by pre-training them with domain-specific data. By exposing the model to a large corpus of text from the target domain, it can learn the specific vocabulary, grammar, and nuances of that domain. This helps the model generate more accurate and contextually relevant text in that domain.

However, this needs a large corpus of domain-specific knowledge, which is rarely available in a sufficient size.

2. Fine-tuning on Domain-Specific Tasks

Another approach is to fine-tune the pre-trained LLM on domain-specific tasks. By training the model on specific tasks related to the target domain, such as sentiment analysis or named entity recognition, it can learn to understand and generate text that aligns with the requirements of those tasks. This fine-tuning process helps the model acquire domain-specific knowledge and improve its performance in that domain.

Still, this doesn't help much with incorporating actual knowledge into the LLM.

3. Incorporating External Knowledge Sources

LLMs can also benefit from incorporating external knowledge sources. This can be done by integrating domain-specific knowledge bases, ontologies, or even expert-curated datasets into the model. By leveraging this external knowledge, the model can generate more accurate and informed text that aligns with the domain's concepts, facts, and context.

While this a very promising approach, we still lack large domain-specific knowledge bases, as specialized knowledge is mostly in people's heads (and let's be honest, also guts) instead of a formalized knowledge base.

4. Human-in-the-Loop Approach

In some cases, incorporating domain knowledge into LLMs may require a human-in-the-loop approach. This involves having domain experts review and provide feedback on the generated text. By iteratively refining the model based on human feedback, the LLM can gradually improve its understanding and generation capabilities in the specific domain.

5. Retrieval-Augmented Generation (RAG)

Retrieval-Augmented Generation (RAG) is another approach to incorporate domain knowledge into Language Learning Models (LLMs). RAG combines the benefits of pre-trained transformers and information retrieval systems.

In the RAG approach, when a query is given, the model retrieves relevant documents from a knowledge source and then uses this information to generate a response. This allows the model to pull in external, domain-specific knowledge when generating text. The advantage of RAG is that it can leverage vast amounts of information without needing to have all of it in its training data. This makes it particularly useful for tasks where the required knowledge may not be present in the pre-training corpus.

However, the effectiveness of RAG depends on the quality and relevance of the retrieved documents. Therefore, it's crucial to have a well-structured and comprehensive knowledge source for the retrieval process.

Conclusion

In conclusion, incorporating domain knowledge into LLMs is crucial for making them more effective and reliable in specific domains. Whether it's through pre-training, fine-tuning, leveraging external knowledge sources, or involving human experts, these methods help LLMs become more knowledgeable and contextually aware. By bridging the gap between general language understanding and domain-specific expertise, we can unlock the full potential of LLMs in various applications.